Donate

New York All Drugs Sales

New York Metropolitan Area Counties
1995 Drug Arrests by Race

(Data Source: Uniform Crime Reports. See below for notes.)


ALL

BLACK

WHITE

AM. INDIAN

ASIAN-PAC.

METROPOLITAN AREA

JURISDICTION

TL

POP

RATE

TL

POP (est)

RATE

TL

POP (est)

RATE

TL

POP (est)

RATE

TL

POP (est)

RATE

All listed below.

All listed below.

38,599 10,350,027 372.94 16,651 882,336 1,887.15 21,801 9,167,956 237.80 49 32,501 150.76 98 267,368 36.65

Albany-Schenectady-Troy, N.Y.

Albany

2,715 287,191 945.36 1,588 26,651 5,958.43 1,121 253,532 442.15 2 574 348.20 4 6,433 62.18

Albany-Schenectady-Troy, N.Y.

Montgomery

188 51,999 361.55 11 588 1,872.06 177 51,001 347.05 0 109 0.00 0 302 0.00

Albany-Schenectady-Troy, N.Y.

Rensselaer

674 156,057 431.89 218 5,774 3,775.47 454 147,177 308.47 1 312 320.40 1 2,793 35.80

Albany-Schenectady-Troy, N.Y.

Saratoga

507 188,515 268.94 28 2,620 1,068.56 477 183,614 259.78 1 302 331.54 1 1,979 50.52

Albany-Schenectady-Troy, N.Y.

Schenectady

625 149,307 418.60 290 7,122 4,071.92 333 139,393 238.89 0 299 0.00 2 2,493 80.21

Albany-Schenectady-Troy, N.Y.

Schoharie

117 32,975 354.81 5 488 1,024.53 112 32,263 347.15 0 76 0.00 0 145 0.00

Binghamton, N.Y.

Broome

1,291 200,093 645.20 417 4,562 9,140.49 867 190,589 454.91 0 360 0.00 7 4,562 153.44

Binghamton, N.Y.

Tioga

149 53,326 279.41 5 389 1,284.42 144 52,403 274.79 0 96 0.00 0 432 0.00

Buffalo-Niagara Falls, N.Y.

Cattaraugus

3 3,106 96.59 0 30 0.00 3 2,985 100.49 0 74 0.00 0 16 0.00

Buffalo-Niagara Falls, N.Y.

Erie

4,853 942,990 514.64 2,437 117,685 2,070.78 2,398 806,256 297.42 10 6,035 165.70 8 13,108 61.03

Buffalo-Niagara Falls, N.Y.

Niagara

607 218,245 278.13 282 13,117 2,149.96 321 201,898 158.99 4 2,139 187.02 0 1,091 0.00

Dutchess County, N.Y.

Dutchess

1,126 253,129 444.83 597 22,731 2,626.37 528 222,399 237.41 0 405 0.00 1 7,594 13.17

Elmira, N.Y.

Chemung

264 73,945 357.02 83 4,496 1,846.14 181 68,517 264.17 0 177 0.00 0 754 0.00

Glens Falls, N.Y.

Warren

247 59,354 416.15 13 338 3,842.54 234 58,523 399.84 0 119 0.00 0 374 0.00

Glens Falls, N.Y.

Washington

175 59,724 293.01 4 2,096 190.81 171 57,347 298.18 0 113 0.00 0 167 0.00

Jamestown, N.Y.

Chautauqua

774 141,908 545.42 222 3,079 7,209.19 548 137,452 398.68 3 653 459.58 1 738 135.52

Nassau-Suffolk, N.Y.

Nassau

2,450 1,288,805 190.10 978 122,050 801.31 1,462 1,112,110 131.46 1 2,062 48.49 9 52,583 17.12

Nassau-Suffolk, N.Y.

Suffolk

2,600 1,333,989 194.90 1,124 92,445 1,215.85 1,462 1,207,127 121.11 6 3,602 166.58 8 30,815 25.96

Newburgh, N.Y.-Pa.

Orange

2,275 312,818 727.26 754 24,619 3,062.70 1,518 282,412 537.51 0 938 0.00 3 4,849 61.87

New York, N.Y.

Nassau

2,450 1,288,805 190.10 978 122,050 801.31 1,462 1,112,110 131.46 1 2,062 48.49 9 52,583 17.12

New York, N.Y.

Putnam

428 89,053 480.61 69 988 6,980.36 359 86,844 413.38 0 134 0.00 0 1,078 0.00

New York, N.Y.

Rockland

1,021 268,011 380.95 356 29,213 1,218.63 652 223,655 291.52 2 750 266.51 11 14,419 76.29

New York, N.Y.

Westchester

2,833 705,216 401.72 1,391 104,725 1,328.25 1,432 565,160 253.38 0 1,340 0.00 10 34,062 29.36

Rochester, N.Y.

Genesee

265 60,409 438.68 38 1,196 3,177.00 226 58,168 388.53 1 755 132.43 0 296 0.00

Rochester, N.Y.

Livingston

164 64,849 252.90 9 2,289 393.16 155 61,885 250.46 0 227 0.00 0 447 0.00

Rochester, N.Y.

Monroe

3,404 725,620 469.12 1,972 94,548 2,085.71 1,419 611,770 231.95 0 2,322 0.00 13 16,980 76.56

Rochester, N.Y.

Ontario

423 90,717 466.29 64 1,869 3,424.71 357 87,959 405.87 1 227 440.93 1 653 153.10

Rochester, N.Y.

Orleans

87 40,760 213.44 16 3,473 460.73 71 36,884 192.50 0 200 0.00 0 204 0.00

Rochester, N.Y.

Wayne

543 92,816 585.03 143 3,388 4,221.05 399 88,658 450.04 0 269 0.00 1 501 199.52

Syracuse, N.Y.

Cayuga

353 82,961 425.50 58 3,177 1,825.39 295 79,029 373.28 0 307 0.00 0 448 0.00

Syracuse, N.Y.

Madison

172 72,880 236.00 10 867 1,153.04 160 71,160 224.85 1 292 343.03 1 554 180.54

Syracuse, N.Y.

Onondaga

3,145 537,513 585.10 1,960 47,409 4,134.27 1,172 475,807 246.32 13 4,031 322.47 0 10,266 0.00

Syracuse, N.Y.

Oswego

264 122,370 215.74 5 673 742.90 259 120,571 214.81 0 477 0.00 0 649 0.00

Utica-Rome, N.Y.

Herkimer

146 56,760 257.22 4 204 1,957.56 142 56,283 252.30 0 102 0.00 0 170 0.00

Utica-Rome, N.Y.

Oneida

1,261 243,811 517.20 522 15,384 3,393.03 730 225,013 324.43 2 561 356.66 7 2,828 247.51

 

Notes:

TL: Total arrests.

POP: Coverage population of reporting law enforcement agencies.

RATE: Arrest Rate per 100,000 population.

Original Source: Uniform Crime Reports, 1995.

Data are total for reporting agencies. Population estimates by race are based on application of U.S. Census percentages of total population to the coverage population in which the arrests occurred. The racial categories and labels are as defined and used in the Uniform Crime Reports. Unfortunately separate data on arrests of Hispanics are not available.

The Uniform Crime Reports provides data on all drug arrests as well as data of arrests for drug possession and sales. Four categories are used to provide more specific data on arrests for different types of controlled substances: 1) Opium and Cocaine and their derivatives (such as Crack, Morphine, Heroin); 2) Marijuana; 3) Synthetic Narcotics - Manufactured Narcotics which can cause true drug addiction (such as Demerol, Methadone); 4) Other Dangerous Non-Narcotic Drugs (such as Barbiturates, Benzedrine, and Methamphetamine).

Primary Source: Chilton, Rowland, and Dee Weber. UNIFORM CRIME REPORTING PROGRAM [UNITED STATES]: ARRESTS BY AGE, SEX, AND RACE FOR POLICE AGENCIES IN METROPOLITAN STATISTICAL AREAS, 1960-1995[Computer file]. ICPSR version. Amherst, MA: University of Massachusetts [producer], 1998.Ann Arbor, MI: Inter-university Consortium for Political and Social Research [distributor],1999.

Citation: Gettman, Jon B. "US Marijuana Arrests. Part Two - Racial Differences in Drug Arrests". Washington, D.C.: National Organization for the Reform of Marijuana Laws. (2000)